

HIGH-VALUE NUTRITION Ko Ngā Kai Whai Painga

The HVN Immune Health Platform: Innovating for the Future of the New Zealand Food & Beverage Industry

Olivier Gasser, PhD

Leader Immune Health PRP

Group Leader, Malaghan Institute of Medical Research

Challenge Host

Challenge Collaborating Parties

How to achieve innovation in nutritional immunology?

Biggest obstacle:

-> limited understanding of how food is being 'sensed' by (and can therefore influence) the immune system

The immune system

- <u>Well understood</u>: sensing of threats to homeostasis:
 - microbial or cancerous,
 - damage-associated, or
 - <u>metabolic</u>
- **Poorly understood**: sensing of prohomeostatic signals from the:
 - <u>diet</u>
 - environment

Dietary sensing

Dietary sensing

- Sensing through antigen- / metabolite-specific:
 - 1. transcription factors (intracellular), or
 - 2. cell surface receptors

Dietary sensing

- Sensing through:
 - 1. the Arylhydrocarbon receptor (AhR)

• Why?

- mediates toxicity of environmental pollutants which impact the HVN target population (China)

- integrates environmental, dietary, microbial (including probiotic products) and metabolic signals

- impacts a very large number of physiological processes (developmental, metabolic, immune, gastrointestinal, ...)

- Food-bioactives: (poly)phenolic compounds

Created with BioRender.com

Ko Ngā Kai

Whai Painga

HIGH-VALUE

NUTRITION

1. AhR

• How?

- *in vitro* screening of dietary compounds with AhR reporter cell lines

- *in vitro* assessments of immunological impact using primary human blood cells (GI trafficking)

- Indigo naturalis dose escalation study (NZ-INDES study)

- analysis of clinical samples from HVN-funded studies

AGRICULTURAL AND FOOD CHEMISTRY

pubs.acs.org/JAFC

Practical Approach To Explore the Effects of Polyphenols on Aryl Hydrocarbon Receptor Regulated Immune Function

Perspective

Jeffry S. Tang,* Alissa Cait, Yanyan Li, Helena Abolins-Thompson, Katie Gell, Patries M. Herst, David O'Sullivan, and Olivier Gasser*

Figure 1. Classes of dietary compounds and environmental pollutants that are described to affect AhR signaling.

inhibition

activation

		Benzoic acid	1.1	1.2	1.2	1.1
	1	2-Hydroxybenzoic acid	1.0	1.1	1.0	0.9
Benzoic acid	3-Hydroxybenzoic acid		1.0	1.3	1.3	1.1
derivatives	1	4-Hydroxybenzoic acid	1.1	1.1	1.1	0.9
	3,4-Dihydroxybenzoic acid		1.0	1.1	1.2	1.1
	3,4-Dihydroxybenzoic acid-3-O-glucuronide		1.0	0.9	1.1	1.0
	3,4-Dihy	ydroxybenzoic acid-3-O-sulfate	1.1	1.2	1.3	1.1
		2,5-Dihydroxybenzoic acid	1.1	1.0	1.1	1.1
2,3-Dihydroxybenzoic acid 2,4-Dihydroxybenzoic acid 3,5-Dihydroxybenzoic acid		2,3-Dihydroxybenzoic acid	1.1	1.1	1.1	1.2
		2,4-Dihydroxybenzoic acid	1.0	1.0	1.0	0.8
		3,5-Dihydroxybenzoic acid	1.1	1.1	1.2	1.3
r	2,6-Dihydroxybenzoic acid		1.0	1.0	0.9	1.0
Chlorogenic acid derivatives	3-O-Catteoylquinic acid		0.8	0.9	0.8	1.0
	3-O-(E)-Feruloylquinic acid		0.8	0.8	0.9	0.9
	5-O-Caffeoylquinic acid		0.9	1.0	1.0	0.9
	5-O-(E)-Feruloylquinic acid		0.9	0.8	0.9	0.9
	4-C+Cateoyiquinic acid		1.0	0.9	0.9	1.1
	Collab and		0.8	0.9	1.0	0.9
	Caffeic acid 3-O-B-D-Glucuronide		0.9	1.0	1.1	1.0
	Caffeic acid 4-O-B-D-Glucuronide		0.9	0.9	1.0	0.9
	Dihydrocaffeic acid		0.8	0.8	0.8	0.8
	Dihydrocaffeic acid-3-O-sulfate		0.9	1.0	1.0	1.0
	Ferulic acid		0.8	0.0	0.9	0.9
	Ferulic acid 4-O-β-D-Glucuronide		1.0	1.0	0.9	1.0
	Ferulic acid-4-O-sulfate		1.0	0.0	1.0	0.9
Cinnamic acid derivatives	Dihydrofe	rulic acid 4-O-B-D-Glucuronide	11	1.0	10	1.0
	Dihydroferulic acid 4-O-sulfate Isoferulic acid-3-O-B-O-Glucuronide Isoferulic acid-3-O-gulfate Isoferulic acid-3-O-gulfate Dihydroisoferulic acid 3-O-B-O-Glucuronide Dihydroisoferulic acid 3-O-S-Sulfate		0.9	0.9	10	0.8
			0.9	1.0	10	1.0
			0.9	0.9	11	1.0
			0.8	0.8	0.9	0.9
			0.8	10	10	11
			0.8	11	1.0	1.0
l			0.9	0.9	1.0	1.4
		Daidzein	1.0	1.1	1.1	1.1
	Daidzein 4'-O-B-D-glucuronide Daidzein 4'-O-Sulfate		1.0	1.0	0.9	1.1
			1.0	1.0	1.1	1.0
	line parage	Daidzein 7-0-β-D-Glucuronide	1.0	0.9	0.9	1.0
	Daidzein 7	7-O-β-D-Glucuronide 4'-Sulfate	1.0	1.0	1.0	0.8
soflavone		Genistein	1.0	1.0	0.9	0.9
netabolites	G	Genistein 4'-O-β-D-Glucuronide	1.1	1.2	1.1	1.0
	Genistein 7-O-β-D-Glucuronide		0.9	1.0	1.1	1.2
		Genistein 7-O-Sulfate	0.8	1.0	1.0	0.9
	Our let	Genistein-diglucuronide	0.9	1.0	0.8	1.0
	Genistein-	/-sunate-4-O-β-D-glucuronide	1.0	1.0	1.0	1.0
Elavan 2 ol	Genistein 7-β-D-Glucuronide-4'-O-Sulfate		0.9	1.0	1.0	1.1
metabolites (4R)-5-(3',4'-1		4/n-5-(3,4-DIOHPhenyl)-Y-VL	0.8	1.0	1.0	0.9
		Cionir netiyi)-y-vL-4-O-sulfate	0.8	0.9	0.9	0.9
Flavonol	metabolites	Quercetin-2- Quercetin	1.0	1.3	1.0	0.9
		Quercetin-3-O-glucurohide	0.9	0.8	0.8	0.9
	-	Cvanidin-3-O-nkicoeide	1.0	1.0	1.0	1.1
Anthocyanins* (0.1, 1, 10, 100 nM)		Cvanidin-3-O-galactoside	1.0	0.0	0.0	1.0
		Cyanidin-3-O-rutinoside	0.9	0.9	0.9	0.9
		Cvanidin-3-Q-arabinoside	0.0	0.9	0.9	1.0
		Delphinidin-3-O-glucoside	0.8	1.0	0.9	0.9
		Delphinidin-3-O-rutinoside	11	0.9	0.9	10
		Malvidin-3-O-glucoside	0.9	11	1.0	0.9
		Malvidin-3-O-galactoside	0.9	0.9	10	0.9
		Pelargonidin-3-O-glucoside	0.8	0.8	1.0	1.0
		Peonidin-3-O-glucoside	0.9	0.9	10	0.9
		Peonidin-3-O-galactoside	0.9	0.8	0.9	0.9
		Petunidin-3-O-glucoside	1.0	0.9	1.1	0.9
		Hippuric acid	1.1	1.1	1.1	1.1
Hippuric a	1CIG	α-Hydroxyhippuric acid	0.8	1.0	1.2	0.9
metabolit	es"	2-Hydroxyhippuric acid	1.0	1.0	1.2	3.2
(0.1, 1, 10,	, 100 µM)	3-Hydroxyhippuric acid	1.1	1.2	1.0	1.1
		L 4-Hydroxyhippuric acid	1.0	1.1	1.0	1.0
Glucosinolate		C 3,3'-Diindoyimethane	1.2	1.3	1.6	2.6
indole metabolites		Indole-3-carboxaldehyde	0.9	1.1	1.6	3.1
	20000000000000	Indole-3-carboxylic acid	0.9	1.0	1.2	2.0
-		Ellagic acid	0.9	0.8	0.8	0.7
		Urolithin A	0.9	0.9	0.9	0.8
	in metabolites	Urolithin B	1.0	0.8	0.6	0.7
Ellagitann		Urolithin B glucuronide	0.8	0.9	0.8	0.8
Ellagitann			10	1.0	0.8	0.9
Ellagitann		L Urolithin D	1.0			
Ellagitann		0.1% DMSO	1.0	1.0	1.0	1.0
Ellagitann		0.1% DMSO Untreated	1.0 1.0	1.0 1,0	1.0 1.0	1.0

Tang et al. submitted

1. AhR

• How?

- *in vitro* screening of dietary compounds with AhR reporter cell lines

- *in vitro* assessments of immunological impact using primary human blood cells (GI trafficking)

- Indigo naturalis dose escalation study (NZ-INDES study)

- analysis of clinical samples from HVN-funded studies

• How?

- *in vitro* screening of dietary compounds with AhR reporter cell lines

- *in vitro* assessments of immunological impact using primary human blood cells (GI trafficking)

- Indigo naturalis dose escalation study (NZ-INDES study)

- analysis of clinical samples from HVN-funded studies

1. AhR

• How?

- *in vitro* screening of dietary compounds with AhR reporter cell lines

- *in vitro* assessments of immunological impact using primary human blood cells (GI trafficking)

- Indigo naturalis dose escalation study (NZ-INDES study)

How does the acute ingestion of a known AhR agonist Influence the peripheral immune system?

Dose-dependent AhR activity

Dietary sensing

- Sensing through:
 - 2. MHC-class 1 related molecule (MR1)

• Why?

- overlap between dietary metabolites binding AhR and MR1

- MR1 restricts the largest T cell subset in humans (mucosal associated invariant T – MAIT cells)

- MR1 immunobiology linked to gastrointestinal, metabolic, pulmonary, skin, liver health as well as antibacterial and antitumoral immunity.

- Food-bioactives: (poly)phenolic compounds (quinones, flavones, isoflavones) and likely others

• Why?

- overlap between dietary metabolites binding AhR and MR1

- MR1 restricts the largest T cell subset in humans (mucosal associated invariant T – MAIT cells)

- MR1 immunobiology linked to gastrointestinal, metabolic, pulmonary, skin, liver health as well as antibacterial and antitumoral immunity.

- Food-bioactives: (poly)phenolic compounds (quinones, flavones, isoflavones) and likely others

ORIGINAL ARTICLE

MR1-dependent immune surveillance of the skin contributes to pathogenesis and is a photobiological target of UV light therapy in a mouse model of atopic dermatitis

Karmella Naidoo¹ | Katherine Woods¹ | Christophe Pellefigues¹ | Alissa Cait¹ | David O'Sullivan^{1,2} | Katie Gell¹ | Andrew J. Marshall³ | Regan J. Anderson³ | Yanyan Li^{1,2} | Alfonso Schmidt¹ | Kef Prasit¹ | Johannes U. Mayer¹ | Aurelie Gestin¹ | Ian F. Hermans¹ | Gavin Painter³ | Elizabeth A. Jacobsen⁴ | Olivier Gasser^{1,2}

Allergy. 2021;00:1-16.

Allergy WILEY

• Why?

- overlap between dietary metabolites binding AhR and MR1

- MR1 restricts the largest T cell subset in humans (mucosal associated invariant T – MAIT cells)

- MR1 immunobiology linked to gastrointestinal, metabolic, pulmonary, skin, liver health as well as antibacterial and antitumoral immunity.

- Food-bioactives: (poly)phenolic compounds (quinones, flavones, isoflavones) and likely others

frontiers Frontiers in Immunology

MR1-dependence of unmetabolized folic acid side-effects

Jeffry S. Tang^{1,2}, Alissa Cait¹, Reuben M. White³, Homayon J. Arabshahi³, David O'Sullivan^{1,2} and Olivier Gasser^{1,2*}

> TYPE Hypothesis and Theory PUBLISHED 09 August 2022 DOI 10.3389/fimmu.2022.946713

• How?

- *in vitro* screening of dietary compounds with MAIT cell competition assay

National SCIENCE

Challenges

HIGH-VALUE

NUTRITION

Ko Ngā Kai

Created with BioRender.com

Whai Painga

• How?

- *in vitro* screening of dietary compounds with MAIT cell competition assay

John Arabshahi, UoA

O'Sullivan et al. unpublished

Aligned project: CD1d

• Why?

- CD1d is, like MR1, a non-classical MHC

molecule, but binds lipids

- CD1d is known to bind dietary lipids and

thereby influence the immunological activity of **NKT** cells

Aligned project: CD1d

• Why?

- CD1d is, like MR1, a non-classical MHC

molecule, but binds lipids

- CD1d is known to bind dietary lipids and

thereby influence the immunological activity of **NKT** cells

Goat Milk–Derived Lipids Restrain NK T Cell–Dependent Eosinophilic Inflammation in a Murine Model of Atopic Dermatitis

Journal of Investigative Dermatology (2022) ■, ■-■; doi:10.1016/j.jid.2022.03.006

^{JID}Open

The immune system

- <u>Well understood</u>: sensing of threats to homeostasis:
 - microbial or cancerous,
 - damage-associated, or
 - <u>metabolic</u>
- **Poorly understood**: sensing of prohomeostatic signals from the:
 - <u>diet</u>
 - <u>environment</u>

Dietary sensing

• Why?

- has rapidly become an essential part of immunology but never applied to nutrition

- obvious relevance for immunophenotyping of dietary intervention samples

- impacts virtually every aspect of immune function

- Food bioactives: probably most ...

Immunometabolism: Cellular Metabolism Turns Immune Regulator^{*}

Published, JBC Papers in Press, November 3, 2015, DOI 10.1074/jbc.R115.693903 Róisín M. Loftus[‡] and David K. Finlay^{‡§1}

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 291, NO. 1, pp. 1–10, January 1, 2016 © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

• Why?

Basic concept: if the ingestion of a food can induce a metabolic shift in a cell, it can change immune function.

• How?

- metabolic flow cytometry

MCT1: Monocarboxylate transporter moves lactate across Glucose cell membrane CD25 PKM: Pyruvate kinase is a key ATP producing step in alycolysis Growth-factor & Metabolic mTORC1 nutrient sensing remodelina GLS1: Glutaminase is required for alutamine utilisation in the TCA cycle PFP pS6 p4EBP1 PKM MCT1 LDHA Lactate -CD98: transporter of branched chain Pyruyate and aromatic amino acids PDHB Ac¹CoA Amino CD98 Citrate synthase: rate limiting enzyme acids of the tricarboxylic (TCA) cycle GLS1 p4EBP1& pS6: phosphorylation of 4EBP1^(thr37/46) - Glutamine O'Sullivan et al. or S6^(Ser235/236) induces increased translation TCA NZASI 2022 poster PDHB: pyruvate dehydrogenase converts pyruvate to acetyl-CoA to link glycolysis and the TCA cycle **HIGH-VALUE** Ko Ngā Kai Whai Painga NUTRITION CD25: IL-2RA receptor upregulation following T cell activation is associated with metabolic remodeling

Phenotypic & Metabolic Targets

Ahl et al. *Commun Biol.*Hartmann et al. *Nat Biotechnol.*Levine et al. *Immunity*Artyomov et al. *Cell Metab.*

• How?

- metabolic flow cytometry: acute changes upon ingestion of equicaloric foods with different glycemic index (preliminary data; Metabolic Health PRP sample)

Glucose transporter

Amino acid transporter

O'Sullivan et al. unpublished HIGH-VALUE

National SCIENCE

Ko Ngā Kai Whai Painga

- Diet is fundamentally linked to human health via immune sensing. The underlying mechanisms are poorly understood
- The characterization of novel and specific interactions between immune receptors and dietary ligands can lead to innovation and is commercially valuable
- Compositional analyses of (your) products is very important (NZ-origin can be leveraged)
- Immune-phenotyping approaches are, and always will be, customized to the clinical outcome and the interventional product
- Il Receptors are not necessarily conserved across species (implications for preclinical models of disease)

Acknowledgements

Dr David O'Sullivan Dr Jeffry Tang

Dr Alissa Cait Dr Patries Herst

Yanyan Li Sophie Faulkner Katie Gell Alix Grooby Helena Abolins-Thompson Ruby Barker-Thomson

Malaghan Core Facilities

Malaghan Fundraising

Dr David O'Sullivan

Dr Jeffry Tang

HIGH-VALUE NUTRITION

Ko Ngā Kai

Whai Painga